Références

Buerger, M. J. (1959). Vector Space, p. 239. New York: John Wiley.
Crutckshank, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Analysis. Crystal., p. 112. New York: Pergamon Press.

Ewing, F. J. (1935). J. Chem. Phys. 3, 420.
Pauling, L. (1960). The Nature of the Chemical Bond, p. 484. Ithaca: Cornell Univ. Press.

Rérat, B. \& Rérat, C. (1961). Bull. Soc. franç. Minér. Crist. 84, 563.
Sierra Lopez, J., Leal, J., Laurent, Y., Pierrot, R., Protas, J. \& Dusausoy, Y. (1968) Bull. Soc. franc. Minér. Crist. 91, 28.

Acta Cryst. (1969). B25, 1558

The Crystal Chemistry of Zirconium Sulphates.
 I. The Structure of the Heptahydrate, a Dimer with the Formula $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} .6 \mathrm{H}_{2} \mathrm{O}$

By I.J. Bear and W. G. Mumme
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 12 September 1968)

Abstract

Zirconium sulphate heptahydrate is triclinic with space group $P \overline{1}$ and unit-cell dimensions $a=12 \cdot 04$, $b=6.36, c=8.28 \AA, \alpha=93.0^{\circ}, \beta=92.4^{\circ}, \gamma=95.9^{\circ}$. The structure has been determined by single-crystal X-ray analysis and refined by least-squares. The main structural unit consists of isolated dimers having the formula $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$. Each zirconium atom has eightfold coordination in the form of a dodecahedron with four oxygen atoms from neighbouring sulphate groups and four water molecules. The polyhedra are bridged by two sulphate tetrahedra, two more sulphate groups acting as terminal members. The dimers are held together in three directions by hydrogen bridging through the water molecules, those forming part of the zirconium coordination together with six additional unbonded molecules which lie in sheets parallel to the (001) plane.

Introduction

There is abundant evidence in the literature to show that zirconium in the presence of sulphuric acid can form an unexpectedly large group of compounds (Blumenthal, 1958; Clearfield, 1964). Besides the so-called 'neutral' salts in which the sulphate to zirconium ratio is 2 , a number of phases in which the sulphate-zirconium ratio is both greater and less than 2 have been isolated. Although considerable chemical data concerning these compounds have accumulated, there is little real understanding of the reason for this multiplicity of phase formation or of their behaviour in solution. There is also little reliable information available concerning their structures (Clearfield, 1964).

Structures have been reported for $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$, the stable 'neutral' phase under ambient conditions (Singer \& Cromer, 1959), and for three basic sulphates $\mathrm{Zr}_{2}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ and $\mathrm{Zr}(\mathrm{OH})_{2} \mathrm{SO}_{4} \mathrm{I}$ and II (McWhan \& Lundgren, 1966). $\mathrm{Zr}(\mathrm{OH})_{2} \mathrm{SO}_{4} \mathrm{I}$ is isomorphous with the corresponding thorium and uranium salts (Lundgren, 1950, 1952). In these four compounds Zr is present in eightfold coordination. For $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zr}(\mathrm{OH})_{2} \mathrm{SO}_{4} \mathrm{I}$ the $\mathrm{Zr}-\mathrm{O}$ coordination is in the form of a square antiprism while in $\mathrm{Zr}_{2}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ it is a dodecahedron. $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ is composed of layers of composition $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ held together by hydrogen bonds. $\mathrm{Zr}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ is built up of sheets of zirconium
and sulphate ions and the zirconium ions of adjacent sheets are connected by double hydroxide bridges.

The $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}$-hydrate system contains a number of unusual compounds. Several anhydrous forms, a number of lower hydrates, two pentahydrates and a heptahydrate have so far been isolated (Bear, 1966; Bear \& Lukaszewski, 1966; Bear, 1967; Bear \& Mumme, 1968), in addition to the well known tetrahydrate (Blumenthal, 1958). These compounds, however, do not form a normal series of hydrates, as an increasing degree of hydration cannot be attained by progressively increasing the water vapour pressure over an anhydrous sample at a suitable temperature. For example a zirconium sulphate monohydrate, formed during thermal decomposition of the solid tetrahydrate, could not be prepared by vapour hydration of $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}$ (Bear, 1967) while the pentahydrates and the heptahydrate all have lower saturated solution vapour pressures and higher solubilities than the tetrahydrate, and so cannot be formed by vapour phase hydration of the latter compound (Bear \& Mumme, 1968).

Parts I to III of this series of papers will describe the structures of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}, \alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ and $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ while the lower hydrates and the anhydrous phases will be reported by us in subsequent papers. A discussion of the chemical and structural relationships between the three highest hydrates and $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ will be included in part III.

Experimental

Well formed prismatic crystals of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$, some more than 0.5 mm in length, were grown from saturated solutions of either α or $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ at temperatures near $0^{\circ} \mathrm{C}$. At these temperatures the crystals are stable in contact with their saturated solution, but decompose if dried at low water vapour pressures. This made chemical analysis of the compound difficult, as samples, whether prepared by vapour hydration of $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ (Bear \& Mumme, 1968) or by crystallization from solution, could only be dried in atmospheres with the partial pressure of water vapour, $P\left(\mathrm{H}_{2} \mathrm{O}\right)$, just below that of the saturated solution. The water content of preparations dried to constant weight over $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions ($35-38 \% \mathrm{w} / \mathrm{w}$) varied by as much as $\pm 0.5 \%$, so that compositions ranged between 7.0 and 7.5 moles of water per mole of sulphate. As it was not known whether results tended to be low because of slight decomposition, or high because of inefficient drying, the compound was tentatively considered to have the formula $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

For the same reasons the density of the phase could not be obtained by the displacement method, and it was necessary to resort to washing single crystals in benzene and rapidly determining their density by equilibrium flotation in benzene-methylene iodide mixtures. The movement of the crystals in the solution was viewed through an enlarging lens. The average value for a number of experiments was $2 \cdot 25 \mathrm{~g} . \mathrm{cm}^{-3}$ but, inevitably, the procedure led to a greater deviation from average than would normally expected. It should

Fig.1. Composite three-dimensional electron density map selected from sections nearest the atom centres and projected on to (010). The contours are at arbitrary intervals. The small black circles are the atom centres from the least-squares refinement. Bonds are drawn as thin lines.
be noted that any decomposition during measurement would be likely to give a high result.
Because of the instability of the compound it was necessary to take special precautions during collection of the X-ray data. The lattice parameters (Table 1) for $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$ were obtained by least-squares refinement of X-ray powder diffraction data (Table 2) collected by slow scanning slightly damp samples, at reduced temperatures, by the use of a Philips propor-tional-counter diffractometer with a Ni -filter and Cu $K \alpha_{1,2}$ radiation. Silicon metal powder was used as an internal calibrant. A special sample cover permitted refrigerated nitrogen gas to be blown over the sample continuously during scanning.

Table 1. Crystallographic data for $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$

Symmetry	Triclinic
Unit-cell dimensions $\left(0^{\circ} \mathrm{C}\right)$	$a=12 \cdot 04 \pm 0 \cdot 01 \AA$
	$b=6 \cdot 36 \pm 0 \cdot 01$
	$c=8 \cdot 28 \pm 0 \cdot 01$
	$\alpha=93 \cdot 0^{\circ} \pm 0 \cdot 1^{\circ}$
	$\beta=92 \cdot 4^{\circ} \pm 0 \cdot 1$
	$\gamma=95 \cdot 9^{\circ} \pm 0 \cdot 1$
Possible space groups	$P 1$ or $P \overline{1}$
D_{x}	$2 \cdot 16 \mathrm{~g} . \mathrm{cm}^{-3}$
D_{m}	$2 \cdot 25 \pm 0 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$
Z	2
μ_{c}	$117 \mathrm{~cm}^{-1}$

Integrated Weissenberg intensity data $h 0 l$ to $h 4 l$, and $h k 0$ were recorded with $\mathrm{Cu} K \alpha$ radiation and multiple film packs, from crystals all measuring approximately $0.1 \times 0.02 \times 0.02 \mathrm{~mm}$, each sealed in a capillary while still wet with mother liquor. Cooling to about $-70^{\circ} \mathrm{C}$ was readily achieved with a Nonius low temperature attachment (Kreuger, 1955) and N_{2} gas which was passed through a copper helix immersed in liquid oxygen.

Although the cooling device worked efficiently, there was a considerable problem involved in keeping sufficient liquid oxygen on hand while data were collected In fact it was possible to collect only one level of data from a particular crystal, and although we tried to use crystals of the same size each time, there was an inevitable variation in their dimensions.

Intensities were measured visually with a standard scale, and the reduction to structure amplitudes, and all subsequent computing was done on the Division's Elliott 803 computer with the use of the computing system devised by Daly, Stephens \& Wheatley (1963).

Interlayer scaling for the five levels of data was adjusted after each least-squares refinement cycle, and this scaled observed data and the structure amplitudes calculated from the final model are listed in Table 3. Scattering curves for the atoms Zr^{4+} (corrected for anomalous dispersion, and the presence of $2 \cdot 0 \% \mathrm{Hf}$) and S were taken from Tables compiled by Cromer \& Waber (1965). The scattering curve for the O^{2-} ion was that of Suzuki (1960).

Structure determination

The b (and c) axis Weissenberg photographs showed that $\mathrm{Zr}\left(\mathrm{SO}_{2}\right)_{4} .7 \mathrm{H}_{2} \mathrm{O}$ was triclinic, $P 1$ or $P \overline{1}$, and from the measured density, $D_{m}=2.25 \mathrm{~g} . \mathrm{cm}^{-3}$, the number of formula units per cell was calculated to be 2 . The space group was assumed to be $P \overline{1}$, and this was confirmed by the satisfactory refinement of the structure. A set of parameters for Zr atom in the general position 2(i)
was determined from the three-dimensional Patterson function, and the signs of the structure factors calculated for these zirconium atom positions were used with the observed structure factors to calculate a three-dimensional Fourier synthesis, $\varrho(x, y, z)$. From this it was possible to determine the parameters for the $S(1)$ and $\mathrm{S}(2)$ atoms, while later three-dimensional Fourier syntheses revealed the positions of the 30 oxygen atoms, all of which were in the general positions 2(i) (Fig. 1).

Table 2. X-ray powder diffraction data for $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$

The main problem in determining the structure arose from the uncertainty of composition. On the initial assumption that the composition was $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ there had to be one oxygen atom in a single-fold position (assuming $P \overline{1}$), but two other possibilities of composition $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O}$ were also kept in mind.

The arrangement of the oxygen atoms in the sulphate groups was quickly determined. However, inter-
layer scaling errors doubtless caused by the use of many different crystals in data collection, manifested themselves in spurious peaks close to the zirconium atom in projection, of comparable height to the oxygen atom peaks and at reasonable bond distances above and below it. This, coupled with the uncertainty of composition, made the determination of the oxygen coordination around the zirconium atom a lengthy and complicated procedure. To this end the data $h k 0$ were col-

Table 3. Observed and calculated structure factors on an absolute scale

Table 3 (cont.)

.

[^0]lected from yet another crystal. This Fourier projection $\varrho(x, y, 0)$ (Fig.2) revealed the spurious nature of these extra peaks, and with this uncertainty removed the dodecahedral coordination of the oxygen atoms around the zirconium unfolded.
The determination of the overall composition was based primarily on the assumption that those atoms constituting the sulphate groups were oxygen atoms. With these eight oxygen atoms accounted for in this manner there were a further eight obviously bonded to
the zirconium atoms (four to each) and another six in positions where they could not enter into the direct bonding. The latter six were certainly free water molecules, and if the bonded eight were also considered to be water molecules the overall composition of the compound became $2\left[\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}\right]$, close to that determined by chemical analysis.

With the stereochemistry of the compound decided in the above fashion, the additional atom required by the formula $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 7 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ would necessarily be
the oxygen atom of a free water molecule occupying one of the special single-fold positions in the space group $P \overline{1}$. However, no such peak could be found and it was therefore concluded that the compound was in fact a heptahydrate.
Refinement of the structure was continued with a number of least-squares cycles by the use of isotropic temperature factors for each atom, until R dropped to 15.9% for the 1219 observed reflexions. The weighting scheme of Cruickshank, Pilling, Bujosa, Lovell \&Truter, (1961) was adopted, and the matrix inversion involved the block-diagonal approximation. This relatively high R value is considered reasonable in view of the difficulties experienced in data collection.
The atomic parameters and individual isotropic temperature factors are listed in Table 4, and the bond lengths in Table 5. The positions of the hydrogen atoms

Fig.2. The electron density projection on to (001), contoured it arbitrary intervals. For notation see caption for Fig. 1.
could not be determined directly, but as we have discussed above, the only initial doubt concerning the decomposition of the compound was its degree of hydration. This was resolved by the Fourier analysis since the oxygen atoms constituting the sulphate groups were easily recognizable and all other peaks of the same height were water molecules. Intramolecular distances between water oxygen atoms and all possible donors and acceptors were calculated and only those with bond distances between the limits 2.50 and $3 \cdot 20 \AA$ were considered in the hydrogen bonding scheme.

Description of the structure

The structure of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$ viewed in projection is shown in Fig.3. The coordination of the zirconium atoms is eightfold, the ligands forming a dodecahedron. The main structural unit consists of two of these polyhedra and four tetrahedral sulphate groups forming a dimeric molecular group of composition $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$. The two zirconium atoms in the dimer are bridged by two of the sulphate groups forming an eightmembered ring structure, while each of the other two forms a bidentate complex with one zirconium atom, and these act as terminal groups to the unit. The dimer has a centre of symmetry.

In view of the difficulties, the refinement of the structure may be deemed satisfactory. The stereochemistry of the dimer was subsequently substantiated when an essentially similar unit was found in a parallel study of the structures of the two pentahydrates (parts II and III), and refinement in the alternative space group $P 1$ in the present instance was therefore not considered.

Apart from the four water molecules bonded to each zirconium atom in the dimer, six more are non-bonded and lie in sheets parallel to (001), so that the compound can best be represented by the formula

$$
\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} .6 \mathrm{H}_{2} \mathrm{O} .
$$

Table 4. Fractional atomic parameters and thermal parameters for $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$

All atoms occupy general positions $2(i), \pm(x, y, z)$				
	x	y	z	B
$\mathrm{Zr}(1)$	$0.2233(2)$	$0.0515(6)$	$0.4758(3)$	$0.58(3) \AA^{2}$
$\mathrm{~S}(1)$	$0.3919(6)$	$0.3150(13)$	$0.6629(8)$	$0.77(11)$
$\mathrm{S}(2)$	$0.0117(5)$	$0.2530(13)$	$0.7002(7)$	$0.57(10)$
$\mathrm{O}(W 1)$	$0.2940(16)$	$0.0081(35)$	$0.2356(21)$	$0.96(32)$
$\mathrm{O}(2)$	$0.0784(19)$	$0.1824(36)$	$0.5696(26)$	$1.89(41)$
$\mathrm{O}(3)$	$0.0408(19)$	$0.1891(42)$	$0.8571(25)$	$1.77(40)$
$\mathrm{O}(4)$	$0.2911(16)$	$0.1785(40)$	$0.7154(22)$	$1.05(33)$
$\mathrm{O}(W 5)$	$0.1694(16)$	$0.8158(36)$	$0.6610(21)$	$0.90(32)$
$\mathrm{O}(W 6)$	$0.3480(16)$	$0.8250(35)$	$0.4901(22)$	$0.99(33)$
$\mathrm{O}(7)$	$0.1085(17)$	$0.8293(37)$	$0.3394(22)$	$1.19(34)$
$\mathrm{O}(8)$	$0.3797(17)$	$0.2871(37)$	$0.4806(22)$	$1.26(35)$
$\mathrm{O}(W 9)$	$0.4437(21)$	$0.2629(44)$	$0.0722(28)$	$2.42(46)$
$\mathrm{O}(10)$	$0.4935(20)$	$0.2365(43)$	$0.7317(26)$	$1.92(40)$
$\mathrm{O}(W 11)$	$0.1721(16)$	$0.8144(35)$	$0.9831(21)$	$0.92(32)$
$\mathrm{O}(W 12)$	$0.1686(18)$	$0.3058(35)$	$0.3203(25)$	$1.63(39)$
$\mathrm{O}(W 13)$	$0.2246(21)$	$0.4059(40)$	$0.0272(28)$	$2.31(45)$
$\mathrm{O}(14)$	$0.0082(25)$	$0.4940(49)$	$0.7032(33)$	$3.35(57)$
$\mathrm{O}(15)$	$0.3819(19)$	$0.5385(42)$	$0.7089(26)$	$1.84(40)$

The overall stability of this compound evidently depends on the hydrogen bridging between the non-bonded water molecules and the adjacent layers consisting of $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ groups. A possible system of hydrogen bonding is shown in Fig. 4 although some of the $\mathrm{O}-\mathrm{O}$ distances lie just outside the
limits of 2.6 to $3.0 \AA$ suggested by Baur (1965). These bonds may be divided into a number of groups which effect the cohesion of the molecule in the three general directions [100], [010] and [001] [Table 5(c)]. Bonds between the oxygen atoms of the terminal sulphate groups of one dimer and the bonded water molecules

Table 5. Interatomic distances and e.s.d.'s (\AA) and angles (${ }^{\circ}$)
(a) Within the ZrO_{8} polyhedra

	M-A		M-B
$\mathrm{Zr}-\mathrm{O}(W 1)$	2.21 ± 0.02	$\mathrm{Zr}-\mathrm{O}(4)$	$2 \cdot 19 \pm 0.02$
$\mathrm{Zr}-\mathrm{O}(2)$	$2 \cdot 16 \pm 0.02$	$\mathrm{Zr}-\mathrm{O}(W 6)$	$2 \cdot 19 \pm 0.02$
$\mathrm{Zr}-\mathrm{O}(W 5)$	2.27 ± 0.02	$\mathrm{Zr}-\mathrm{O}(7)$	$2 \cdot 12 \pm 0.02$
$\mathrm{Zr}-\mathrm{O}(8)$	$2 \cdot 28 \pm 0.02$	$\mathrm{Zr}-\mathrm{O}(W 12)$	$2 \cdot 25 \pm 0.02$
Av.	$2 \cdot 23$	Av.	$2 \cdot 19$
Basic salt*	$2 \cdot 20$	Basic salt	$2 \cdot 19$
a			m
$\mathrm{O}(W 1)-\mathrm{O}(8)$	2.72 ± 0.03	$\mathrm{O}(W 1)-\mathrm{O}(7)$	$2 \cdot 60 \pm 0.03$
$\mathrm{O}(2)-\mathrm{O}(W 5)$	$2 \cdot 80 \pm 0.03$	$\mathrm{O}(2)-\mathrm{O}(W 12)$	2.50 ± 0.03
		$\mathrm{O}(W 5)-\mathrm{O}(W 6)$	$2 \cdot 62 \pm 0.03$
		$\mathrm{O}(4)-\mathrm{O}(8)$	2.36 ± 0.03
Av.	2.76	Av.	$2 \cdot 52$
Basic salt	2.78 Basic salt		$2 \cdot 40$
	* $\mathrm{Zr}_{2}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$.		
$\mathrm{O}(4)-\mathrm{O}(W 5)$	$\stackrel{g}{\underline{g} \cdot 61} \pm 0.03$	$\mathrm{O}(7)-\mathrm{O}(W 12)$	b 3.06 ± 0.03
$\mathrm{O}(2)-\mathrm{O}(4)$	2.79 ± 0.03	$\mathrm{O}(7)-\mathrm{O}(W 6)$	$3 \cdot 10 \pm 0 \cdot 03$
$\mathrm{O}(W 5)-\mathrm{O}(7)$	2.74 ± 0.03	$\mathrm{O}(4)-\mathrm{O}(W 12)$	$3 \cdot 70 \pm 0.03$
$\mathrm{O}(2)-\mathrm{O}(7)$	2.93 ± 0.03	$\mathrm{O}(4)-\mathrm{O}(W 6)$	$3 \cdot 00 \pm 0.03$

$\mathrm{O}(W 1)-\mathrm{O}(W 6)$
$\mathrm{O}(W 6)-\mathrm{O}(8)$
2.55 ± 0.03
2.93 ± 0.03
$\mathrm{O}(W 1)-\mathrm{O}(W 12)$
$2 \cdot 63 \pm 0.03$
Basic salt

2.78	Av.	3.21

(b) Within sulphate groups

$\mathrm{S}(1)-\mathrm{O}(8)$	1.51 ± 0.02	$\mathrm{S}(2)-\mathrm{O}(2)$	1.45 ± 0.02
$\mathrm{S}(1)-\mathrm{O}(4)$	1.51 ± 0.02	$\mathrm{S}(2)-\mathrm{O}(3)$	$1 \cdot 42 \pm 0.02$
$\mathrm{S}(1)-\mathrm{O}(10)$	1.47 ± 0.02	$\mathrm{S}(2)-\mathrm{O}(7)$	$1 \cdot 50 \pm 0.02$
$\mathrm{S}(1)-\mathrm{O}(15)$	1.47 ± 0.02	$\mathrm{S}(2)-\mathrm{O}(14)$	$1 \cdot 54 \pm 0.02$
Av.	$1 \cdot 49$	Av.	$1 \cdot 48$
$\mathrm{O}(15)-\mathrm{S}(1)-\mathrm{O}(8)$	$108{ }^{\circ}$	$\mathrm{O}(7)-\mathrm{S}(2)-\mathrm{O}(14)$	$102{ }^{\circ}$
$\mathrm{O}(15)-\mathrm{S}(1)-\mathrm{O}(4)$	110	$\mathrm{O}(3)-\mathrm{S}(2)-\mathrm{O}(14)$	111
$\mathrm{O}(15)-\mathrm{S}(1)-\mathrm{O}(10)$	114	$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{O}(14)$	111
$\mathrm{O}(10)-\mathrm{S}(1)-\mathrm{O}(8)$	114	$\mathrm{O}(3)-\mathrm{S}(2)-\mathrm{O}(7)$	108
$\mathrm{O}(8)-\mathrm{S}(1)-\mathrm{O}(4)$	103	$\mathrm{O}(3)-\mathrm{S}(2)-\mathrm{O}(2)$	116
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{O}(10)$	109	$\mathrm{O}(7)-\mathrm{S}(2)-\mathrm{O}(2)$	108
Av.	110	Av.	109

(c) Possible hydrogen bonding between water molecules and their neighbours
(a) Bonds directed along [100]

$(a)(15)-\mathrm{O}(W 9)$	2.86 ± 0.03
$\mathrm{O}(W 9)-\mathrm{O}(W 1)$	2.74 ± 0.03
$\mathrm{O}(10)-\mathrm{O}(W 1)$	3.14 ± 0.03
$\mathrm{O}(10)-\mathrm{O}(W 6)$	$2.74+0.03$

(b) Bonds directed along [010]

$\mathrm{O}(14)-\mathrm{O}(W 5)$	$2 \cdot 72 \pm 0.03$
$\mathrm{O}(14)-\mathrm{O}(W 12)$	$2 \cdot 60 \pm 0.03$
$\mathrm{O}(15)-\mathrm{O}(W 6)$	$2 \cdot 68 \pm 0.03$
(c) Bonds directed	[001]
$\mathrm{O}(7)-\mathrm{O}(W 11)$	3.08 ± 0.03
$\mathrm{O}(W 12)-\mathrm{O}(W 13)$	$2 \cdot 64 \pm 0.03$
$\mathrm{O}(W 11)-\mathrm{O}(W 13)$	2.78 ± 0.03
$\mathrm{O}(W 11)-\mathrm{O}(W 5)$	2.67 ± 0.03
$\mathrm{O}(W 13)-\mathrm{O}(4)$	3.07 ± 0.03
$\mathrm{O}(W 13)-\mathrm{O}(W 9)$	$2 \cdot 90 \pm 0.03$
$\mathrm{O}(W 13)-\mathrm{O}(3)$	2.77 ± 0.03
$\mathrm{O}(W 11)-\mathrm{O}(3)$	$3 \cdot 19 \pm 0.03$
$\mathrm{O}(W 9)-\mathrm{O}(10)$	2.91 ± 0.03
$\mathrm{O}(W 1)-\mathrm{O}(W 11)$	$2 \cdot 67 \pm 0.03$

of a neighbour help bridge the ends of the dimers. Lateral bridging of adjacent dimers is achieved between the bonded oxygen atom and water molecules via the non-bonded water molecules, while each dimer is bonded to the dimers immediately above and below it, mainly by bridging between bonded oxygen atoms and bonded water molecules.

The distances in ZrO_{8} polyhedra given in Table 5 ($c f$. Fig. 5) are divided into six groups ($M-A, M-B, a, b$,

Fig. 3. The structure of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$ projected on to (010). Large open circles, zirconium atoms; full black circles, sulphur atoms; medium open circles, oxygen atoms; stippled circles, water molecules.
g and m) in accordance with the nomenclature of Hoard \& Silverton (1963) for the $\overline{4} 2 m$ symmetry of the ideal $\mathrm{Mo}(\mathrm{CN})_{8}^{4-}$ coordination, and do not differ greatly from the average values found by $\mathrm{McWhan} \&$ Lundgren (1966) for the basic salt $\mathrm{Zr}_{2}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, which are also given in the same Table.
While the sulphate groups show quite a significant departure from the ideal tetrahedral symmetry (Table 5), the mean bond distances and angles for each group are close to the values Bauer (1964) found for several other sulphates. It is possible that the very short bond of $1.42 \AA$ for $\mathrm{S}(2)-\mathrm{O}(3)$ indicates that this oxygen atom does not enter into the hydrogen bonding scheme (Baur, 1964). The very long bond $1.54 \AA$ for $\mathrm{S}(2)-\mathrm{O}(14)$ on the other hand suggests that the main hydrogen bonding along [010] is via this oxygen atom.

The outstanding feature of this structure is of course the dimer and its existence as an isolated unit. Hydrogen bridging in layer structures such as $\gamma-\mathrm{FeO}(\mathrm{OH})$ (Ewing, 1935) is well documented and $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}, 4 \mathrm{H}_{2} \mathrm{O}$ is a pertinent example of this type of bonding in sul-phate-hydrates. Isolated metal and sulphate groups held together by hydrogen bonds are found in $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (Beevers \& Schwartz, 1935) and $\mathrm{BeSO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$ (Beevers \& Lipson, 1932), while Baur (1962) found isolated $\mathrm{Mg}_{2}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ rings linked by hydrogen bonds in $\mathrm{MgSO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$. There is little doubt that the hydrogen bonding of the somewhat larger molecular unit in $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$ contributes to its abnormal chemical behaviour. This will be discussed in part III.

Fig.4. Schematic projection on to (010) illustrating the possible hydrogen bonding scheme. Atoms are numbered according to Table 4. Small full black circles, zirconium atoms; medium full black (and cross hatched) circles, sulphur atoms; large open circles, oxygen atoms and water molecules. Dots and dashes represent bonding between ends of dimers: dashes represent bonding between adjacent dimers; dots represent bonding between overlying and underlying dimers.

References

Baur, W. H. (1962). Acta Cryst. 15, 815.
Baur, W. H. (1964). Acta Cryst. 17, 1361.
Baur, W. H. (1965). Acta Cryst. 19, 909.
Bear, I. J. (1966). Aust. J. Chem. 19, 357.
Bear, I. J. (1967). Aust. J Chem. 20, 415.
Bear, I. J. \& Lukaszewski, G. M. (1960). Aust. J. Chem. 19, 1973.
Bear, I. J. \& Mumme, W. G. (1968). Chem. Commun. p. 609.
Beevers, C. A. \& Lipson, H. (1932). Z. Kristallogr. 82, 297.
Beevers, C. A. \& Schwartz, C. M. (1935). Z. Kristallogr. 91A, 157.
Blumenthal, W. B. (1958). The Chemical Behaviour of Zirconium. New York: Van Nostrand.
Clearfield, A. (1964). Rev. Pure Appl. Chem. 14, 91.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell F. M. \& Truter, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 32. Oxford: Pergamon Press.
Daly, J. J., Stephens, F. S. \& Wheatley, P. J. (1963). Monsanto Research S. A., Final Report No. 52.
Ewing, F. J. (1935). J. Chem. Phys. 3, 420.
Hoard, J. L. \& Silverton, J. V. (1963). Inorg. Chem. 2, 235.
Kreuger, A. (1955). Acta Cryst. 8, 348.
Lundgren. G. (1950). Ark. Kemi, 2, 535.
Lundgren, G. (1952). Ark. Kemi, 4, 421.
McWhan, D. B. \& Lundgren, G. (1966). Inorg. Chem. 5, 284.

Fig. 5. The coordination of the oxygen atoms around zirconium in $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$. The distances that should be equal, according to the ideal $\overline{4} 2 m$ symmetry of the $\mathrm{Mo}(\mathrm{CN})^{4} 8^{-}$ coordination, are marked according to Hoard \& Silverton (1963).

Singer, J. \& Cromer, D. T. (1959). Acta Cryst. 12, 719. Suzuki, T. (1960). Acta Cryst. 13, 279.

The Crystal Chemistry of Zirconium Sulphates. II. The Structure of the $\boldsymbol{\alpha}$-Pentahydrate, $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{8}} . \mathbf{2 \mathbf { H } _ { 2 } \mathrm { O }}$

By I.J. Bear and W. G. Mumme
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 12 September 1968)

Abstract

The structure of $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ has been determined by single-crystal X-ray analysis and refined by least-squares. The crystals, which are triclinic with space group $P \overline{1}$, have the unit-cell dimensions $a=11.90, b=6.17, c=7.57 \AA, \alpha=106.5^{\circ}, \beta=95.7^{\circ}$ and $\gamma=104.6^{\circ}$. The structure of this compound, like that of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$, contains isolated dimers of composition $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$. The $\mathrm{Zr}-\mathrm{O}$ coordination is again eightfold and the dimeric units are held together by hydrogen bridging through both the coordinated and non-bonded water molecules. In $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$, however, there are only two non-bonded water molecules in the unit cell and these lie in sheets parallel to the (101) direction.

Introduction

This is the second paper in a series dealing with chem-ico-structural aspects of solid phases in the $\mathrm{ZrO}_{2}-$ $\mathrm{SO}_{3}-\mathrm{H}_{2} \mathrm{O}$ system and in particular with $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}$-hydrates. Part I (Bear \& Mumme, 1969a) described the crystal structure determination of the highest hydrate so far isolated, namely $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}$. Its structure, which was shown to be built up from molecular dimers represented by the formula $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$, differs markedly from that of the tetrahydrate (Singer \&

Cromer, 1959) which is composed of layers of composition $\left[\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]_{n}$. The present paper describes the structure analysis of one of two pentahydrates in the series, $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ (Bear, 1966), while part III (Bear \& Mumme, 1969b), which follows, deals with the other.

Experimental

Microcrystalline $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$, free from other hydration products, is readily prepared by allowing a saturated solution of $\alpha-\mathrm{Zr}(\mathrm{SO})_{4}$ containing between

[^0]:

